Long-lived fission products are radioactive materials with a long half-life (more than 200,000 years) produced by nuclear fission.
Contents |
Nuclear fission produces fission products, as well as actinides from nuclear fuel nuclei that capture neutrons but fail to fission, and activation products from neutron activation of reactor or environmental materials.
The high short-term radioactivity of spent nuclear fuel is primarily from fission products with short half-life. The radioactivity in the fission product mixture is mostly short-lived isotopes such as I-131 and 140Ba, after about four months 141Ce, 95Zr/95Nb and 89Sr take the largest share, while after about two or three years the largest share is taken by 144Ce/144Pr, 106Ru/106Rh and 147Pm. Note that in the case of a release of radioactivity from a power reactor or used fuel, only some elements are released. As a result the isotopic signature of the radioactivity is very different from an open air nuclear detonation where all the fission products are dispersed.
Prop: Unit: |
t½ a |
Yield % |
Q * keV |
βγ * |
---|---|---|---|---|
155Eu | 4.76 | .0803 | 252 | βγ |
85Kr | 10.76 | .2180 | 687 | βγ |
113mCd | 14.1 | .0008 | 316 | β |
90Sr | 28.9 | 4.505 | 2826 | β |
137Cs | 30.23 | 6.337 | 1176 | βγ |
121mSn | 43.9 | .00005 | 390 | βγ |
151Sm | 90 | .5314 | 77 | β |
After several years of cooling, most radioactivity is from the fission products caesium-137 and strontium-90, which are each produced in about 6% of fissions, and have half-lives of about 30 years. Other fission products with similar half-lives have much lower fission product yields, lower decay energy, and several (151Sm,155Eu,113mCd) are also quickly destroyed by neutron capture while still in the reactor, so are not responsible for more than a tiny fraction of the radiation production at any time. Therefore, in the period from several years to several hundred years after use, radioactivity of spent fuel can be modeled simply as exponential decay of the 137Cs and 90Sr. These are sometimes known as medium-lived fission products.[1][2]
Krypton-85, the 3rd most active MLFP, is a noble gas which is allowed to escape during current nuclear reprocessing; however, its inertness means that it does not concentrate in the environment, but diffuses to a uniform low concentration in the atmosphere. Spent fuel in the US and some other countries is not likely to be reprocessed until decades after use, and by that time most of the Kr-85 will have decayed.
Actinides | Half-life | Fission products | ||||||
---|---|---|---|---|---|---|---|---|
244Cm | 241Pu f | 250Cf | 243Cmf | 10–30 y | 137Cs | 90Sr | 85Kr | |
232U f | 238Pu | f is for fissile |
69–90 y | 151Sm nc➔ | ||||
4n | 249Cf f | 242Amf | 141–351 | No fission product has half-life 102 to 2×105 years |
||||
241Am | 251Cf f | 431–898 | ||||||
240Pu | 229Th | 246Cm | 243Am | 5–7 ky | ||||
4n | 245Cmf | 250Cm | 239Pu f | 8–24 ky | ||||
233U f | 230Th | 231Pa | 32–160 | |||||
4n+1 | 234U | 4n+3 | 211–290 | 99Tc | 126Sn | 79Se | ||
248Cm | 242Pu | 340–373 | Long-lived fission products | |||||
237Np | 4n+2 | 1–2 My | 93Zr | 135Cs nc➔ | ||||
236U | 4n+1 | 247Cmf | 6–23 My | 107Pd | 129I | |||
244Pu | 80 My | >7% | >5% | >1% | >.1% | |||
232Th | 238U | 235U f | 0.7–12 Gy | fission product yield |
After Cs-137 and Sr-90 have decayed to low levels, the bulk of radioactivity from spent fuel come not from fission products but actinides, notably plutonium-239, plutonium-240, americium-241, americium-243, curium-245, and curium-246. These can be recovered by nuclear reprocessing (either before or after most Cs-137 and Sr-90 decay) and fissioned, offering the possibility of greatly reducing waste radioactivity in the time scale of about 103 to 105 years. Pu-239 is usable as fuel in existing thermal reactors, but some minor actinides like Am-241, as well as the non-fissile and less-fertile isotope plutonium-242, are better destroyed in fast reactors, accelerator-driven subcritical reactors, or fusion reactors.
On scales greater than 105 years, fission products, chiefly 99Tc, again represent a significant proportion of the remaining, though lower, radioactivity, along with longer-lived actinides like neptunium-237 and plutonium-242, if those have not been destroyed.
The most abundant long-lived fission products have total decay energy around 100-300 KeV, only part of which appears in the beta particle; the rest is lost to a neutrino that has no effect. In contrast, actinides undergo multiple alpha decays, each with decay energy around 4-5 MeV.
Only seven fission products have long half-lives, and these are much longer than 30 years, in the range of 200,000 to 16 million years. These are known as long-lived fission products (LLFP). Two or three have relatively high yields of about 6%, while the rest appear at much lower yields. (This list of seven excludes isotopes with very slow decay and half-lives longer than the age of the universe, which are effectively stable and already found in nature; as well as a few nuclides like technetium-98 and samarium-146 that are "shadowed" from beta decay and can only occur as direct fission products, not as beta decay products of more neutron-rich initial fission products. The shadowed fission products have yields on the order of one millionth as much as iodine-129.)
Prop: Unit: |
t½ Ma |
Yield % |
Q * KeV |
βγ * |
---|---|---|---|---|
99Tc | 0.211 | 6.1385 | 294 | β |
126Sn | 0.230 | 0.1084 | 4050 | βγ |
79Se | 0.327 | 0.0447 | 151 | β |
93Zr | 1.53 | 5.4575 | 91 | βγ |
135Cs | 2.3 | 6.9110 | 269 | β |
107Pd | 6.5 | 1.2499 | 33 | β |
129I | 15.7 | 0.8410 | 194 | βγ |
The first three have similar half-lives, between 200 thousand and 300 thousand years; the last four have longer half-lives, in the low millions of years.
In total, the other six LLFPs, in thermal reactor spent fuel, initially release only a bit more than 10% as much energy per unit time as Tc-99 for U-235 fission, or 25% as much for 65% U-235+35% Pu-239. About 1000 years after fuel use, radioactivity from the medium-lived fission products Cs-137 and Sr-90 drops below the level of radioactivity from Tc-99 or LLFPs in general. (Actinides, if not removed, will be emitting more radioactivity than either at this point.) By about 1 million years, Tc-99 radioactivity will have declined below that of Zr-93, though immobility of the latter means it is probably still a lesser hazard. By about 3 million years, Zr-93 decay energy will have declined below that of I-129.
Nuclear transmutation is under consideration as a disposal method, primarily for Tc-99 and I-129 as these both represent the greatest biohazards and have the greatest neutron capture cross sections, although transmutation is still slow compared to fission of actinides in a reactor. Transmutation has also been considered for Cs-135, but is almost certainly not worthwhile for the other LLFPs.
|